On Nonlinear Preservers of Weak Matrix Majorization
نویسندگان
چکیده مقاله:
این مقاله چکیده ندارد
منابع مشابه
Linear Preservers of Majorization
For vectors $X, Yin mathbb{R}^{n}$, we say $X$ is left matrix majorized by $Y$ and write $X prec_{ell} Y$ if for some row stochastic matrix $R, ~X=RY.$ Also, we write $Xsim_{ell}Y,$ when $Xprec_{ell}Yprec_{ell}X.$ A linear operator $Tcolon mathbb{R}^{p}to mathbb{R}^{n}$ is said to be a linear preserver of a given relation $prec$ if $Xprec Y$ on $mathbb{R}^{p}$ implies that $TXprec TY$ on $mathb...
متن کاملWeak matrix majorization
Given X, Y ∈ Rn×m we introduce the following notion of matrix majorization, called weak matrix majorization, X w Y if there exists a row-stochastic matrix A ∈ Rn×n such that AX = Y, and consider the relations between this concept, strong majorization ( s ) and directional majorization ( ). It is verified that s⇒ ⇒ w , but none of the reciprocal implications is true. Nevertheless, we study the i...
متن کاملlinear preservers of two-sided matrix majorization
for vectors x, y ∈ rn, it is said that x is left matrix majorizedby y if for some row stochastic matrix r; x = ry. the relationx ∼` y, is defined as follows: x ∼` y if and only if x is leftmatrix majorized by y and y is left matrix majorized by x. alinear operator t : rp → rn is said to be a linear preserver ofa given relation ≺ if x ≺ y on rp implies that t x ≺ ty onrn. the linear preservers o...
متن کاملLinear preservers of Miranda-Thompson majorization on MM;N
Miranda-Thompson majorization is a group-induced cone ordering on $mathbb{R}^{n}$ induced by the group of generalized permutation with determinants equal to 1. In this paper, we generalize Miranda-Thompson majorization on the matrices. For $X$, $Yin M_{m,n}$, $X$ is said to be Miranda-Thompson majorized by $Y$ (denoted by $Xprec_{mt}Y$) if there exists some $Din rm{Conv(G)}$ s...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 32 شماره No. 2
صفحات 21- 30
تاریخ انتشار 2011-01-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023